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NATIONAL AERONAUTICS AND SPACE AIMINISTRATION

MEMORANDUM 4-20-59L

TRANSONIC AERODYNAMIC CHARACTERISTICS OF A

45 ° SWEPT-WING--FUSELAGE MODEL WITH A FINNED AND UNFINNED

BODY PYLON-MOUNTED BENEATH THE FUSELAGE OR WING,

INCLUDING MEASURHMENTS OF BODY LOADS

By Dewey E. Wornom

SUMMARY

An investigation of a model of a standard size body in combination

with a representative 49 ° swept-wing--fuselage model has been conducted

in the Langley 8-foot transonic pressure tunnel over a Mach number

range from 0.80 to 1.43. The body, with a fineness ratio of 8.5, was

tested with and without fins, and was pylon-mounted beneath the fuselage

or wing. Force measurements were obtained on the wing-fuselage model

with and without the body, for an angle-of-attack range from -2° to

approximately 12o and an angle-of-sideslip range from -8° to 8°. In

addition, body loads were measured over the same angle-of-attack and

angle-of-sideslip range. The Reynolds number for the investigation,

based on the wing mean aerodynamic chord, varied from 1.85 × lO6 to

2.85 x i06.

The addition of the body beneath the fuselage or the wing increased

the drag coefficient of the complete model over the Mach number range

tested. On the basis of the drag increase per body, the under-fuselage

position was the more favorable. Furthermore, the bodies tended to

increase the lateral stability of the complete model.

The variation of body loads with angle of attack for the unfinned

bodies was generally small and linear over the Mach number range tested

with the addition of fins causing large increases in the rates of

change of normal-force coefficient and nose-down pitching-moment coef-

ficient. The variation of body side-force coefficient with sideslip

for the unfinned body beneath the fuselage was at least twice as large

as the variation of this load for the unfinned body beneath the wing.

The addition of fins to the body beneath either the fuselage or the
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wing approximately doubled the rate of changeof body side-force coeffi-
cient with sideslip. Furthermore, the variation of body side-force coef-
ficient with sideslip for the body beneath the wing was at least twice as
large as the variation of this load with ang]e of attack.

INTRODUCTION

A finned body of standard size, shape, and lug position as determined
by the Wright Aeronautical Development Commardhas been considered for
external installation on current and future _ighter-bomber type airplanes.
In order to investigate the body forces and momentswithin the operating
speed range of these airplanes, tests of the body attached to a repre-
sentative wing-fuselage combination were performed in the Langley 8-foot
transonic pressure tunnel. The body was of O.07-scale with a maximum
diameter of 1.40 inches and a fineness ratio of 8.5. The wing chosen for
the investigation was swept back 45° at the quarter-chord line, with an
aspect ratio of 4.0 and a taper ratio of 0.1_. The ratio of wing area to
body frontal area is 131.5.

Tests were madeof three different configurations: the wing-fuselage
combination alone, the wing-fuselage combinalion with one body pylon-
mounted beneath the fuselage center line, and the wing-fuselage combina-
tion with a body pylon-mounted under each wing panel. Forces and moments
were measured simultaneously and separately (n the bodies and the wing-
fuselage combination with and without bodies at Machnumbersfrom 0.80 to
1.45 over an angle-of-attack and angle-of-si(ieslip range.

Reynolds numberfor the investigation, l,ased on the wing meanaerody-
namic chord, varied from approximately 1.85 >z106 to 2.85 x 106.

Additional data involving body loads fo] a body mountedbeneath a
swept wing can be found in references 1 to 6
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SYMBOLS

The systems of axes used for data presentation, stability axes for

the wing-fuselage combination (with or without bodies), and body axes

for the bodies proper are shown in figure 1.

A

b

CD

maximum frontal area of body, 0.01069 sq ft

wing span, in.

wlng-fuselage drag coefficient, Drag
qS



CD'

CL

C_

C m

C n

Cy

Cc,b

Cm,b

CN,b

C
n,b

Cy,b

CmcL

C_

Cn_

wing-fuselage longitudinal-force coefficient,

Longitudinal force
, (CD = CD when _ = 0°)

qS

wing-fuselage lift coefficient,
Lift

qs

wing-fuselage rolling-moment coefficient,
Rolling moment

qSb

wing-fuselage pitching-moment coefficient,

Pitching moment about 0.25_

qS_

wing-fuselage yawing-moment coefficient,

Yawing moment about 0.25c

qSb

wing-fuselage lateral-force coefficient, Lateral force
qS

body axial-force coefficient, Body axial force
qA

body pitching-moment coefficient,

Body pitching moment about 0.435_

qA_

body normal-force coefficient, Body normal force
qA

body yawing-moment coefficient,

Body yawing moment about 0.435Z

qA_

body lateral-force coefficient, Body lateral force
qA

static longitudinal-stability parameter, averaged from CL = 0

over linear portion of curve

effective-dihedral derivative, _?,/_

directional-stability derivative, 8Cn/8_
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Cy8

c

M

q

R

S

C5

lateral-force derivative, ()Cy/_

lift-curve slope per degree, averaged from CL : 0 over

linear portion of curve

local wing chord, in.

wing mean aerodynamic chord, in.

length of body, in.

free-stream Mach n_nber

free-stream dynamic pressure, ib/sq ft

Reynolds number based on

wing area, sq ft

spanwise distance from plane of symmetry of wing-fuselage

model, in.

angle of attack, deg

angle of sideslip, deg

APPARATUS AND TEST_

Tunne i

The investigation was conducted in the langley 8-foot transonic

pressure tunnel, which is a single return sy_tem with a rectangular test

section permitting continuous operation thro[ghout the transonic speed

range. For the supersonic Mach number of 1.L S, filler blocks were

installed in the slotted test section as des(ribed in reference 7- Auto-

matic stagnation-temperature controls maintain a constant and uniform

temperature of 120 ° F during the test. In older to prevent condensation,

the dewpoint was maintained at 0 ° F or lower.

Through design of the sting-support syslem, the model is essenti-

ally located at the center llne of the test _ection throughout the

ranges of angle-of-attack and angle-of-sides]ip tested.
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Model

Dimensions of the wing-fuselage combination are presented in fig-

ures 2(a) and 2(b). The steel wing was cambered for a design lift coef-

ficient of 0.2. It had 45 ° of sweepback at the quarter-chord line, an

aspect ratio of 4.0, and a taper ratio of 0.15. The wing airfoil sec-

tion varied from NACA 64A206 at the root to NACA 64A203, a = 0.8 (modi-

fied), at 0.50b/2 and remained the same out to the tip. The fuselage,

constructed of steel with a plastic exterior, was cambered and indented

for a design Mach number of 1.43 in order to reduce drag due to lift and

wave drag. (See ref. 8.) Fuselage coordinates are given in table I.

Body dimensions are shown in figure 2(c). The body was a O.07-scale

model made of aluminum with a length of ll.90 inches, a maximum diameter

of 1.40 inches, and a fineness ratio of 8.5. Coordinates of the body are

given in table II. The pylon, which was used in all body positions, was

unswept, had a 65A005 airfoil section, and was positioned with respect

to the body as shown in figure 2(c). The lower end of the pylon was

attached to the bottom of the body by means of an internal balance. A

slot in the top of the body provided clearance between the body and the

pylon of approximately 1/32 of an inch.

For all positions, the longitudinal location of the body center

of gravity (0.435Z) was 0.12_ rearward of the quarter-chord point of

the wing mean aerodynamic chord. The vertical distance between the

body center line and adjacent wing or fuselage surface was 1.10 inches

(0.786 of the maximum body diameter) as shown in figures 2(a) and 2(b).

Photographs of the model installed in the test section of the 8-foot

transonic pressure tunnel are shown in figure 3.

Measurements and Accuracies

Forces and moments were measured on the wing-fuselage combination,

with or without bodies, by a six-component electrical strain-gage balance

mounted within the fuselage. Simultaneously, but independently, the

forces and moments on the bodies proper were measured by a five-component

electrical strain-gage balance mounted within the bodies. In the case of

the bodies under the wing, the balance was located within the body under

the left wing. Wing-fuselage-combination force and moment coefficients

were based on the wing area of 1.408 square feet, mean aerodynamic chord

of 8.421 inches, and were adjusted for base drag. Body force and moment

coefficients were based on the body maximum cross-sectional area of

0.01069 square foot and length of 11.9 inches.
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Through consideration of the static calibrations of the electrical

strain-gage balances and repeatability of data, the estimated accuracy

of the coefficients for a Mach number of 0.80 and a tunnel stagnation

pressure of 0.75 atmosphere is as follows:

C L ........... ±O.O1

CD ........... ±0.001

Cm ........... t0.O02

C_ ........... ±0.0003

Cn ........... ±0.0009

Cy ........... ±0.004

CN, b ........... tO.04

Cc, b ........... tO.O14

Cm, b ........... ±0.014

Cn, b ........... ±0.01

Cy, b ....... _ . . . ±O.04

Since the accuracy is inversely proportional to dynamic pressure,

these values decrease with Mach number and tunnel stagnation pressure.

Angles of attack and sideslip were de sermined with a pendulum-type

strain-gage unit, which was located within the nose of the fuselage and

considered to be accurate to ±0.1 degree. Deflections due to loads on

the bodies were not accounted for, but static-load-calibration data

showed that body deflections due to maximum loads experienced during

tests would be less than 0.5 degree. A d_mmy balance in the body

beneath the right wing insured that deflections due to loads were

identical to those of the body beneath the left wing with the internal

balance.

Tests

Tests were made at Mach numbers from 0.80 to 1.43 over an angle-of-

attack range from -2° to approximately 12 ° and an angle-of-sideslip

range from -8 ° to 8° . In some cases, load limits of the internal strain-

gage balance reduced the maximum angles, the lateral tests, with angle

of sideslip varying, were made at angles of attack of approximately 0°

and 5° . In order to obtain desired angle range without exceeding balance

limits, the tunnel stagnation pressure was reduced on certain tests. For

the longitudinal tests at Mach numbers from 0.80 to 1.20, the tunnel

pressure was reduced to 0.9 atmosphere, anl for the lateral tests over

the same Mach number range, the tunnel pressure was reduced to

0.75 atmosphere. (See fig. 4.) Data for the Mach number of 1.43 were

taken at a tunnel pressure of 0.65 atmosphere with the exception of the

data obtained with the finned body beneath the fuselage. For this con-

figuration, data were taken at 1.O atmosphere. Comparison of low angle

data at 1.0 and 0.65 tunnel atmosphere for other configurations of this

investigation (not presented herein) shows no appreciable Reynolds number

effect on the forces and moments.
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For transition, i/8-inch-wide strips of No. 120 carborundum grit

(maximum diameter of 0.0049 in.), sparsely applied, were used on the

upper and lower wing surfaces and on the fuselage nose and body nose

at i0 percent of their respective lengths.

RESULTS

The data from this investigation are presented in the following

figures:

Complete model - Figure
Effects of transition on the longitudinal characteristics

with finned body pylon-mounted beneath the fuselage ..... 5
Longitudinal characteristics of model without bodies ..... 6

Longitudinal characteristics with finned and unfinned

body pylon-mounted beneath the fuselage ........... 7
Longitudinal characteristics with finned and unfinned

bodies pylon-mounted beneath the wing ............ 8

Lateral characteristics of model without bodies ........ 9

Lateral characteristics with finned and unfinned body

pylon-mounted beneath the fuselage ............. i0

Lateral characteristics with finned and unfinned bodies

pylon-mounted beneath the wing ............... ii

Body loads -

Variation with angle of attack for the finned and urLfinned

body pylon-mounted beneath the fuselage ........... 12

Variation with angle of attack for the finned and unfinned

bodies pylon-mounted beneath the left wing ......... 13

Variation with angle of sideslip for the finned and

unfinned body pylon-mounted beneath the fuselage ...... 14

Variation with angle of sideslip for the finned and

unfinned body pylon-mounted beneath the left wing ...... 15

Analysis -

Variation with Mach number of the longitudinal character-

istics of the swept wing-fuselage configuration with and

without bodies .......................

Variation with Mach number of the lateral characteristics

of the swept wing-fuselage configuration with and without

bodies ...........................

Variation with Mach number of body loads for the bodies

pylon-mounted beneath the fuselage or wing with or
without fins

16

17

...................... 18 to 21
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In order to assist the reader in the use of the figures, a small

front view of the particular configuration has been placed at the top

of each figure. A completely darkened view, such as the one shown on

figure 7, indicates that the data were obtained by means of the balance

within the fuselage which measured the forces and moments on the com-

plete configuration. A view, such as the one shown on figure 13 in

which Just the body is darkened, indicates that the data were obtained

by means of the balance within that body which measured the forces and

moments on the body proper in the presence of the wing-fuselage combi-

nation and pylon.

The use of staggered scales has been employed extensively in the

presentation of the data, and care should be _.xercised in the selection

of the zero axis for each curve.

DISCUSSION

L

2

0

6

Complete Model Characteristics

Effect of model transition.- Addition of transition strips had no

appreciable effect on the lift or pitching-moment characteristics. (See

fig. 5.) An increase of approximately 0.0025 in drag coefficient at

zero and low lifts is noted over the Mach number range tested but slowly

vanished with an increase in llft coefficient to the maximum test lift

coefficient of approximately 0.6.

Effect of bodies on lon6itudinal characteristics.- The most signifi-

cant effect of either the body beneath the fuselage or two bodies beneath

the wing was on the drag characteristics as shown in figure 16. At

transonic speeds, the increase in wave drag due to the bodies beneath the

wing was approximately three times greater than that for the body beneath

the fuselage. For CL = 0.3 and above subscnic speeds, the total drag

increase due to the bodies beneath the wing is more than double that due

to the body beneath the fuselage. Based on the drag increment per body,

the fuselage position appears to be more favcrable than the wing posi-

tion. It should be noted, however, that a mcre forward chordwise posi-

tion of the bodies beneath the wing might result in less total drag as

indicated in reference 9- Addition of fins to the bodies had no further

effect on the drag characteristics of the complete model.

The addition of the bodies resulted in a slight reduction in lift

coefficient with an appreciable attendant effect on the pitching-moment

coefficient. (See figs. 6, 7, and 8.) The ;itching-moment coefficient

was increased by approximately 0.O1 to 0.03 cver the test Mach number

range and lift-coefficient range, with the bcdies beneath the wing
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having the greatest effect. The only appreciable effect of the addition

of fins is noted for the bodies beneath the wlngwhereby the pitching-

moment coefficient was increased negatively by approximately 0.006 at

subsonic speeds.

Effect of bodies on the lateral characteristics.- In general, the

addition of the bodies tended to increase the lateral stability of the

complete model at _ _ -0.2 ° and 9.7 °, with the most pronounced effect

being upon the effective dihedral C_ above a Mach number of 0.95

at _ _ -0.2 ° (fig. 17). Addition of the fins to the bodies had no

further effect on the lateral characteristics.

Body Loads

Effect of an6le of attack.- For the unfinned body mounted beneath

either the fuselage or the wing, the variation of body loads with

was generally small and linear over the Mach number rsm4e tested

(figs. 12, 13, 18, and 19). An exception is shown, however, by the

variations with _ of Cy, b and Cn, b for the body beneath the left

wing. Because the body side loads act in the direction of the least

structural strength of the supporting pylon, they are of considerable

importance. However, the well inboard position of the body beneath

the wing is more favorable than a more outboard position since refer-

ence 2 indicates that a more outboard position would have considerably

greater rates of change in Cy, b with _ and greater side loads at

larger angles of attack.

The addition of fins to the bodies caused large increases in CN, b

and nose-down Cm, b with increases in _ (figs. 12, 13, 18, and 19).

It should be noted that similar changes would be expected from adding

fins to the body alone in a uniform flow field. The fins also had an

appreciable effect on Cy, b and Cn, b for the body beneath the left

wing (fig. 13). In this case, the addition of fins displaced the

curves of Cy, b plotted against _ by approximately 0.15 (inboard)

over the Mach number range with little effect on their slopes. This

displacement, accompanied by an increase in negative yawing moment

(nose outboard), is probably due to the inward flow of the wing wake

acting on the fins.

It is of interest to note that because of their structural impor-

tance the side loads on the body beneath the fuselage (with or without

fins) were essentially zero over the test Mach number and angle-of-

attack range (fig. 12).
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Effects of sideslip.- The effects of sideslip on the body loads for

_ -0.2 ° and 5.7 ° are shown in figures 14, 15, 20, and 21. Variation

of Cy, b and Cn, b with _ was essentially linear for the body (with

or without fins) beneath the fuselage or wing over the test Mach number

range. The rate of change of Cy, b and Cn, b with _ for the unfinned

body beneath the fuselage was approximately twice as large as those for

the body beneath the wing (at _ _ 5.7o). Although the data are insuf-

ficient to support definite conclusions, it appears that the higher rate

of change of side load with 8 for the body beneath the fuselage is the

result of influence of the fuselage in accelerating the cross-flow com-

ponent due to sideslip. Furthermore, the varlation of Cy, b and Cn, b

with _ for the unfinned body beneath the wir g was at least twice as

large as the variation of these loads with _ over the complete test

Mach number range. The addition of fins to the body beneath the fuse-

lage or wing approximately doubled the rate o5 change of Cy, b with

and was partly because of the added side area of the fins. A reversal

of slope of the variation of Cn, b with B (indicating a center-of-

pressure shift from ahead to well behind the body assumed center of

gravity) is also noted because of addition of the fins to either the

body beneath the fuselage or wing.

Both positive and negative increases in 8 caused large changes in

CN, b in the direction of the weight of the bcdy and nose-up changes in

Cm, b . The magnitude of the changes was greater for the body under the

fuselage than for the body under the wing. It is not unreasonable to

suppose that the supporting pylon exerts considerable effect on these

loads by blocking the cross-flow component due to _ between the body

and fuselage or wing. Although the data are incomplete for the body

beneath the fuselage, the rate of change of CN, b with _ appears

relatively insensitive to the addition of fins or increases in 6.
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CONCLUSIONS

An investigation of a model of a standard size body in combination

with a representative 45 ° swept-wing--fuselage model has been conducted

in the Langley 8-foot transonic pressure tunneL. Force measurements

obtained on the wing-fuselage model with and wLthout the body and on

the body proper in the presence of the wing-fu3elage model indicate the

following conclusions:

1. The addition of the body beneath the f_selage or wing increased

the drag coefficient of the complete model over the Mach number range

tested. On the basis of the drag increase per body, the under-fuselage

position was more favorable.
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2. Addition of the body beneath the fuselage or the wing tended to
increase the lateral stability of the complete model.

3. The variation of body loads with angle of attack m for the
unfinned bodies beneath the fuselage or wing was generally small and
linear over the Machn_nber range tested. The addition of fins, however,
caused large increases in the magnitude of the rates of changeof body
normal-force coefficient CN,b and body pitchlng-moment coefficient
Cm,b with _.

4. The variations of body side-force coefficient Cy,b and body
yawing-momentcoefficient Cn,b with angle of sideslip _ for the
unfinned body beneath the fuselage were at least twice as large as the
variations of these loads for the unfinned body beneath the wing. The
addition of fins to the body beneath either the fuselage or the wing
approximately doubled the rate of Cy,b with _.

5. The variations of Cy,b and Cn,b with _ for the unfinned
body beneath the wing were at least twice as large as the variations of
these loads with _.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Langley Field, Va., January 23, 1959.
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TABLE II.- BODY COORDINATES

Body station, in. Body radius, in.

0

.006

.025

.035

.052

•070

•170

•295
.420

.770
1. 120

1.47o
i .820

2.170

2.52o
2.87o

3.220

3.570
3.920

4.27 to 5.95

6.300

6.65o

7 .ooo
7 •350

7.700

8.050
8•400

8.750

9. loo

9.450

9.800

I0.150

io. 5oo
io .850
ii •200

ii.550
ii .9OO

0

.029

.053

.060

.069

•077
•]-23

•174
•218

•326

.4n

.473

.524

•565
.6OO

.630

•657
.681

.694

.700

.697

.689

•675

.656

.632

.604

.575

.557
•499

.457

.414

•368

•322
•276
.230
•187

.137
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20.00 ! .

/
I_J j_ /

i . _ "L...1/ M.A.C.
_ -45 --/

/ ...." _ / 5.3'65

x.O

!

L .... . ..... L? _---s.oo-._ -f_

]

Area, sq ft 1.408

M A.C., ir_ 8.421
Aspect ratio 4.0

Taper ratio J5

Dihedral ,deg 0

_, - 11,90

35.3O

Wing details

2y/b =0; NACA 64A2D6_ o=O

2y/b =0.50; NACA 64 _03; a= 0.8 (modif_-_l)

2y/b =1.0; NACA 64A_ 03; a = 0.8 (modified)

7
1.69

(a) Swept-wing--fuselage configuration with body pylon-mounted

beneath the fuselage.

Figure 2.- Detail drawings of model investigated. All dimensions in

inches unless otherwise noted.
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" 25 b/2

,------5.00---'_

(b) Swept-wing--fuselage configuration with body pylon-mounted

beneath the fuselage.

Figure 2.- Continued.
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-k (a) Body pylon-mounted beneath the fuselage. L-93050

Figure 3.- Photographs of the model investigated installed in the

Langley 8-foot transonic pressure tunnel.
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0 2 4 .6 .8 :2 0 2. 4 5 8 -2 0 .2 .4

klfi' coeffic_eni',CL Lift coefficienf,C t Lift"coefficient,C L

.6 .8

}'igure 5.- Effects of transition on the longitudinal characteristics of

the swept-wing--fuselage configuration ;ith finned body pylon-mounted

beneath the fuselage. Flagged symbols indicate fixed transition.



23

I0

8

[

o

0 .2 .4 .6 .8 -.2 0 .2 .4 ,6 .8 -2 0 .2 .4 .6
Lift coefficient,C L Lift coefficienl,C L Lift coeffictent,C L

Figure 6.- Longitudinal characteristics of the swept-wing--fuselage

configuration.
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-- -- -- Fini on

-.2 0 .2 .4 .6 ,8 0 -.2 0 .2 .4 .6 ,8 -,2 0 .2 .4 .6
Lift coefflcient,C L Lift coefficient,C L Lift coefflcient,C L

.8

Figure 7-- Longitudinal characteristics oJ' the swept-wing--fuselage
configuration with finned and unfinned body pylon-mounted beneath

the fuselage. Flagged symbols indlcat_ fins on.
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-- Fins off
-- --- Fins on

_0
0
GJ

I

-.2 0 .2 .4 .6 .8 -.2 0 .2 .4 .6 .8 -.2 0 .2 .4 .6
Lift coefficient,C L Lift coefficienf,C L Lift coeff_cient,C L

Figure 8.- Longitudinal characteristics of the swept-wing--fuselage

configuration with finned and unfinned bodies pylon-mounted beneath

the wing. Flagged symbols indicate fins on.
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(b) c_ 5.9° .

Figure 9.- Concluded.
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Angle d sideslip,B,deg
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Figure i0.- Concluded.
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(b) _ _ 5.6°.

Figure ii.- Concluded.
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Figure 12.- Variation with angle of atta,:k of loads on the finned and
unfinned body pylon-mounted beneath the fuselage. Flagged symbols
indicate fins on.



Figure 12.- Concluded.
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-.2
-4 -2 0 2 4 6 8 I0

An(jJeof attack,_,deg

-- Fins off

-- - -- Fins on

Figure 13.- Variation with angle of attack off loads on the finned and

unfinned body pylon-mounted beneath the left wing. Flagged symbols
indicate fins on.
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Figure 13.- Concluded•
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---- -- Fmm o.

8 -12 -8 -4 0 4 8

Angle of sideslip,,8, deg

(a) _ -0.2 ° .

Figure I_.- Variation with angle of sideslip of loads on the finne_ and

unfinned body pylon-mounted beneath the fuselage. Flagged symbols

indicate fins on.



37

_D

8
I

.12 -8 -4 0 4 8
of sideslip,,8,decj

(a) _ _ -0.2° • Concluded.

Figure 14.- Continued.
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(b) _ _ 5.7 °.

Figure i_.- Continued.
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Figure 14.- Concluded.
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8

(a) _ _ -0.2 °.

Figure 15.- Variation with angle of sideslip of loads on the finned and

unfinned body pylon-mounted beneath the left wing. Flagged symbols
indicate fins on.
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Figure i_.- Continued.
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Figure l_.- Continued.
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Angle of sideslip,/9,deg

(b) c__ 5.6 ° . Concluded.

Figure 15.- Concluded.
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